
"The South Pole is the closest you can get to space and still be on the ground," says John Kovac of the Harvard-Smithsonian Center for Astrophysics, leader of the BICEP2 collaboration. "It's one of the driest and clearest locations on Earth, perfect for observing the faint microwaves from the Big Bang."
Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of our best telescopes. All this, of course, was just theory. Until last month when researchers from the BICEP2 collaboration announced the first direct evidence for this cosmic inflation. Their data also represent the first images of gravitational waves, or ripples in space-time. These waves have been described as the "first tremors of the Big Bang." Finally, the data confirm a deep connection between quantum mechanics and general relativity. "Detecting this signal is one of the most important goals in cosmology today. A lot of work by a lot of people has led up to this point," said Kovac.
According to the theory of Inflation, the Universe underwent a violent and rapid expansion at only 10^-35 seconds after the Big Bang, making the horizon size much larger, and allowing the space to become flat. Confirmation of Inflation would be an amazing feat in observational Cosmology. Inflation during the first moments of time produced a Cosmic Gravitational-Wave Background (CGB), which in turn imprinted a faint but unique signature in the polarization of the CMB. Since gravitational waves are by nature tensor fluctuations, the polarization signature that the CGB stamps onto the CMB has a curl component (called "B-mode" polarization). In contrast, scalar density fluctuations at the surface of last scattering only contribute a curl-free (or "E-mode") polarization component to the CMB which was first detected by the DASI experiment at the South Pole.
Observing from the South Pole, this series of experiments aims to discover signatures of Inflation by actually detecting the CGB via its weak imprint as the unique B-mode polarization signature of the CMB, directly probing the Universe at an earlier time than ever before.
Last month, scientists announced the first hard evidence for cosmic inflation, the process by which the infant universe swelled from microscopic to cosmic size in an instant. This almost unimaginably fast expansion was first theorized more than three decades ago, yet only now has "smoking gun" proof emerged when the world was stunned by announcement in March that a telescope at the South Pole (image above) had detected a cosmic fossil from the earliest moments of creation.
These groundbreaking results came from observations by the BICEP2 telescope of the cosmic microwave background -- a faint glow left over from the Big Bang. Tiny fluctuations in this afterglow provide clues to conditions in the early universe. For example, small differences in temperature across the sky show where parts of the universe were denser, eventually condensing into galaxies and galactic clusters.
"'Farside of the World' --South Pole's Role in the Epic Discovery of
Gravitational Waves." The Daily Galaxy. N.p., 24 Apr. 2014. Web. 25 Apr.
2014.
Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of our best telescopes. All this, of course, was just theory. Until last month when researchers from the BICEP2 collaboration announced the first direct evidence for this cosmic inflation. Their data also represent the first images of gravitational waves, or ripples in space-time. These waves have been described as the "first tremors of the Big Bang." Finally, the data confirm a deep connection between quantum mechanics and general relativity. "Detecting this signal is one of the most important goals in cosmology today. A lot of work by a lot of people has led up to this point," said Kovac.
According to the theory of Inflation, the Universe underwent a violent and rapid expansion at only 10^-35 seconds after the Big Bang, making the horizon size much larger, and allowing the space to become flat. Confirmation of Inflation would be an amazing feat in observational Cosmology. Inflation during the first moments of time produced a Cosmic Gravitational-Wave Background (CGB), which in turn imprinted a faint but unique signature in the polarization of the CMB. Since gravitational waves are by nature tensor fluctuations, the polarization signature that the CGB stamps onto the CMB has a curl component (called "B-mode" polarization). In contrast, scalar density fluctuations at the surface of last scattering only contribute a curl-free (or "E-mode") polarization component to the CMB which was first detected by the DASI experiment at the South Pole.
Observing from the South Pole, this series of experiments aims to discover signatures of Inflation by actually detecting the CGB via its weak imprint as the unique B-mode polarization signature of the CMB, directly probing the Universe at an earlier time than ever before.
Last month, scientists announced the first hard evidence for cosmic inflation, the process by which the infant universe swelled from microscopic to cosmic size in an instant. This almost unimaginably fast expansion was first theorized more than three decades ago, yet only now has "smoking gun" proof emerged when the world was stunned by announcement in March that a telescope at the South Pole (image above) had detected a cosmic fossil from the earliest moments of creation.
These groundbreaking results came from observations by the BICEP2 telescope of the cosmic microwave background -- a faint glow left over from the Big Bang. Tiny fluctuations in this afterglow provide clues to conditions in the early universe. For example, small differences in temperature across the sky show where parts of the universe were denser, eventually condensing into galaxies and galactic clusters.
"'Farside of the World' --South Pole's Role in the Epic Discovery of
Gravitational Waves." The Daily Galaxy. N.p., 24 Apr. 2014. Web. 25 Apr.
2014.